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Arithmétique – Partie 2 – Version « réduite » 
 
 

I. Congruence 
 
Définition I.1 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. On dit que 𝑚 et 𝑛 sont 
congrus modulo 𝑑 si 𝑛	 − 	𝑚 est divisible par 𝑑. On note alors 𝑛	 ≡ 𝑚	[𝑑] 
 
Exemple I.2 :	8	 ≡ 2	[3]	car 8 − 2 = 6 est divisible par 3. 
 
Remarque I.3 : Soit 𝑎 un entier relatif et 𝑏 un entier relatif non nul. Il existe (division euclidienne de 𝑎 par 𝑏) un unique 
couple (𝑞	; 𝑟) 	∈ ℤ! tel que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

Donc 𝑎 − 𝑟 = 𝑏𝑞 et donc 𝑎	 ≡ 𝑟	[𝑏]. 
 
Remarque I.4 : Attention ! 
Si 𝑎	 ≡ 𝑟	[𝑏], alors 𝑟 n’est pas forcément le reste de la division euclidienne de 𝑎 par 𝑏.  
 
Contre-exemple I.5 : 
65 − (−5) = 70 = 7 × 10 donc 65 ≡ −5[7] mais 65 = 7 × 10 − 5 n’est pas la division euclidienne de 65 par 7, celle-ci 
étant 65 = 7 × 9 + 2. 
 
Remarque I.6 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. Alors par définition : 

𝑛	 ≡ 𝑚	[𝑑] si et seulement s’il existe 𝑘	 ∈ ℤ tel que 𝑛	 = 	𝑚	 + 	𝑘𝑑. 
 
Propriété I.7 : 
Soient 𝑚,𝑛,𝑚′, 𝑛′	quatre entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2.  
Si 𝑛	 ≡ 𝑚	[𝑑] et 𝑛′	 ≡ 𝑚′	[𝑑] alors : 
 

1) 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑] 
2) 𝑛𝑛′	 ≡ 	𝑚𝑚′	[𝑑] 
3) ∀	𝑝 ∈ ℕ, 		𝑛	" ≡ 𝑚"	[𝑑] 
4) ∀	𝑎 ∈ ℤ, 𝑎𝑛	º	𝑎𝑚	[𝑑] 

 
Démonstration :  
Si 𝑛	 ≡ 𝑚	[𝑑]	et	𝑛′	 ≡ 		𝑚′	[𝑑] alors il existe (𝑘; 𝑘′) 	∈ ℤ! tels que : H 𝑛	 = 	𝑚	 + 	𝑘𝑑	

𝑛′	 = 	𝑚′	 + 	𝑘′𝑑. 
Donc : 

1) 𝑛	 + 	𝑛′	 = 	𝑚	 + 	𝑚′	 +	(𝑘	 + 	𝑘′)𝑑 
Or 𝑘	 + 	𝑘′	 ∈ ℤ donc 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑]. 
 

2) 𝑛	 ×	𝑛# = (𝑚	 + 	𝑘𝑑) × (	𝑚# +	𝑘#𝑑) = 		𝑚	 × 	𝑚′	 +	(𝑘𝑚′	 + 	𝑘′𝑚	 + 	𝑘𝑘′)𝑑.  
Or 𝑘𝑚′ + 	𝑘′𝑚	 + 	𝑘𝑘′	 ∈ ℤ donc 𝑛	 × 	𝑛′	º		𝑚	 × 	𝑚′	[𝑑]. 
 

3) 𝑛" 	−	𝑚" 	= 	 (𝑛	 − 	𝑚)(𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$%) (Égalité de Bernouilli, voir ci-après) 
Or 𝑛	 − 	𝑚	 ≡ 	0	[𝑑] et 𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$% ∈ ℤ donc 𝑛" 	−	𝑚" 	≡ 	0	[𝑑] ie 𝑛" 	≡ 𝑚"	[𝑑]. 
 

4) 𝑎𝑛	 = 	𝑎(𝑚	 + 	𝑘𝑑) = 𝑎𝑚	 + 	𝑎𝑘𝑑.  
Or 𝑎𝑘	 ∈ ℤ donc 𝑎𝑛	 ≡ 	𝑎𝑚	[𝑑] 

 
Remarque I.8 : Attention !  
Les réciproques sont fausses. 
 
Propriété I.9 : (égalité de Bernouilli) 
Soient 𝑎, 𝑏 deux nombres réels et 𝑛 un entier naturel supérieur ou égal à 1. 
 
Alors : 𝑎& − 𝑏& = (𝑎 − 𝑏)∑ 𝑎&$'$%𝑏'&$%

'() = (𝑎 − 𝑏)(𝑎&$% + 𝑎&$!𝑏 +⋯+ 𝑎𝑏&$! + 𝑏&$%). 
 
Démonstration : sera faite pendant la séance. 
 
Application I.10 : Puissances d'un entier 
Déterminer les restes de la division par 5 des puissances de 2&  pour 𝑛 ∈ ℕ. 
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II. Algorithme d’Euclide et PGCD de deux entiers 
 

1. Algorithme d’Euclide 
 
Soient 𝑎 et 𝑏 deux entiers. On note 𝐷(𝑎) l’ensemble des diviseurs de 𝑎 et 𝐷(𝑎, 𝑏)l’ensemble des diviseurs communs 
de 𝑎 et 𝑏. 
 
Lemme II.1 : Si 𝑎 et 𝑏 sont deux entiers, alors  𝐷(𝑎, 𝑏) = 𝐷(|𝑎|, |𝑏|) 
 
Démonstration : Il s’agit de prouver une égalité ensembliste. Nous allons procéder par double inclusion. 
 
⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
En particulier, 𝑑 divise 𝑎 donc 𝑑 divise ±𝑎 et donc 𝑑 divise |𝑎| 
De même, 𝑑 divise |𝑏|. 
Donc 𝑑 ∈ 𝐷(|𝑎|, |𝑏|). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
 
Remarque II.2 : ce lemme permet de limiter la recherche des diviseurs communs de deux nombres entiers à ceux de 
leurs valeurs absolues, c’est-à-dire de deux nombres entiers naturels. 
 
Lemme II.3 : Si 𝑎 et 𝑏 sont deux entiers naturels avec 𝑏 > 0 et si 𝑟 désigne le reste de la division euclidienne de 𝑎 par 
𝑏, alors 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑟). 
 
Démonstration : Également par double inclusion. 
Notons 𝑞 le quotient de la division euclidienne de 𝑎 par 𝑏, de sorte que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

 
⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
Alors 𝑑 divise 𝑎 et 𝑏. 
De plus 𝑟 = 𝑎 − 𝑏𝑞 donc 𝑑 divise 𝑟. 
Donc 𝑑 ∈ 𝐷(𝑏, 𝑟). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
 
Remarque II.4 : ce lemme permet de remplacer la recherche des diviseurs communs de 𝑎 et 𝑏 à ceux de 𝑏 et 𝑟, avec 
0 ≤ 𝑟 < |𝑏|. 
 
Lemme II.5 : Si 𝑎	est entier, alors  𝐷(𝑎, 0) = 𝐷(𝑎) 
 
Démonstration : Également par double inclusion, laissée au lecteur. 
 
Remarque II.6 : ce lemme permet de conclure si un des deux entiers est nul. 
 
Application II.7 : algorithme d’Euclide 
Soient 𝑎 et 𝑏 deux entiers. 
Notons 𝑟) = |𝑎| et 𝑟% = |𝑏|. D’après le lemme II.1 : 𝐷(𝑎, 𝑏) = 𝐷(𝑟), 𝑟%). 
 

• Étape 1 : 
§ Si 𝑟% = 0, alors 𝐷(𝑟), 𝑟%) = 𝐷(𝑟)) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟)	par 𝑟% : ∃! (𝑞%	; 𝑟!) 	∈ ℕ! tel que 7

𝑟) = 𝑟%𝑞% + 𝑟!
0 ≤ 𝑟! < 𝑟%

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟), 𝑟%) = 𝐷(𝑟%, 𝑟!). 
 

• Étape 2 : 
§ Si 𝑟! = 0, alors 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟%) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟%	par 𝑟! : ∃! (𝑞!	; 𝑟*) 		 ∈ ℕ! tel que 7

𝑟% = 𝑟!𝑞! + 𝑟*
0 ≤ 𝑟* < 𝑟!

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟*). 

… 
On obtient une suite d’entiers naturels (𝑟')'+)	strictement décroissante, donc ∃𝑁 ≥ 0 tel que 𝑟, ≠ 0 et 𝑟,-% = 0. 
De plus 𝐷(𝑟), 𝑟%) = 	𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟*) 	= ⋯ = 	𝐷(𝑟,, 𝑟,-%) = 𝐷(𝑟,). 
 
Exemple II.8 : Chercher avec l’algorithme d’Euclide les diviseurs communs de 56 et 12. 
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2. PGCD de deux entiers 
 
Propriété II.9 :  
Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe un unique entier naturel, noté 𝑎 ∧ 𝑏 (ou 𝑃𝐺𝐶𝐷(𝑎	; 𝑏)) appelé plus grand commun diviseur de 𝑎 et 𝑏 tel 
que : 

1) 𝑎 ∧ 𝑏 divise 𝑎 et 𝑏 
2) Tout diviseur de 𝑎 et 𝑏 divise 𝑎 ∧ 𝑏 

De plus, ce PGCD, nul si 𝑎 et 𝑏 sont nuls, est, dans tous les autres cas, égal au dernier reste non nul dans 
l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
 
Démonstration : On suppose 𝑎 et 𝑏 non nuls. 

• Unicité : Soient 𝑑 et 𝑑’ deux entiers naturels vérifiant 1) et 2).  
D’après 1), 𝑑 est un diviseur commun de 𝑎 et 𝑏, donc d’après 2), 𝑑 divise 𝑑’. 
De même 𝑑′ divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, alors 𝑑 = 𝑑’. 
• Existence : Notons 𝑟, le dernier reste non nul dans l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
C’est un entier naturel et d’après les lemmes précédents : 𝐷(𝑎, 𝑏) = 	𝐷(|𝑎|, |𝑏|) = 𝐷(𝑟,). Donc : 

o 𝑟,	divise 𝑎 et 𝑏 
o Tout diviseur de 𝑎 et 𝑏 divise 𝑟, 

Par unicité 𝑟, = 𝑎 ∧ 𝑏. 
 
Exemple II.10 : Déterminer le PGCD de 2952 et 516. 
 

3. Égalité de Bézout 
 
Propriété II.11 : Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe deux entiers 𝑢 et 𝑣 (mais pas nécessairement uniques) tels que : 𝑎𝑢 + 𝑏𝑣 = 𝑎 ∧ 𝑏 
 
Démonstration : on reprend les notations utilisées pour l’algorithme d’Euclide avec 𝑟) = |𝑎| et 𝑟% = |𝑏|. On a : 

(0) 𝑢.𝑎 + 𝑣)𝑏 = 𝑟), avec 𝑢) = ±1 et 𝑣) = 0 
(1) 𝑢%𝑎 + 𝑣%𝑏 = 𝑟%, avec 𝑢% = 0 et 𝑣% = ±1 

 
On écrit 𝑟) = 𝑟%𝑞% + 𝑟!	avec 0 ≤ 𝑟! < 𝑟%, puis l’égalité (2) = (0) − 𝑞% × (1) : 

(2) 𝑢.𝑎 + 𝑣)𝑏 − 𝑞% × (𝑢%𝑎 + 𝑣%𝑏) = 𝑟) − 𝑞%𝑟% 
Soit : (𝑢) − 𝑞%𝑢%)𝑎 + (𝑣) − 𝑞%𝑣%)𝑏 = 𝑟) − 𝑞%𝑟% 
On obtient : 𝑢!𝑎 + 𝑣!𝑏 = 𝑟!, avec : 𝑢! = 𝑢) − 𝑞%𝑢% et 𝑣! = 𝑣) − 𝑞%𝑣% 
 

On écrit 𝑟% = 𝑟!𝑞! + 𝑟*	avec 0 ≤ 𝑟* < 𝑟%, puis l’égalité (3) = (1) − 𝑞! × (2) : 
(3) 𝑢%𝑎 + 𝑣%𝑏 − 𝑞! × (𝑢!𝑎 + 𝑣!𝑏) = 𝑟% − 𝑞!𝑟! 

Soit : (𝑢% − 𝑞!𝑢!)𝑎 + (𝑣% − 𝑞!𝑣!)𝑏 = 𝑟% − 𝑞!𝑟! 
On obtient : 𝑢*𝑎 + 𝑣*𝑏 = 𝑟*, avec : 𝑢* = 𝑢% − 𝑞!𝑢! et 𝑣* = 𝑣% − 𝑞!𝑣! 
 

On poursuit le processus jusqu’au premier reste nul : 𝑟,$% = 𝑞,𝑟, + 0 
On a alors 𝑟, = 	𝑎 ∧ 𝑏 et l’égalité (N) : 

(N) 𝑢,𝑎 + 𝑣,𝑏 = 𝑟,, avec : 𝑢, = 𝑢,$! − 𝑞,$%𝑢,$% et 𝑣, = 𝑣,$! − 𝑞,$%𝑣,$%. 
 
Remarque II.13 : La démonstration peut paraître ardue, en raison des notations, mais le principe est très simple : il 
s’agit simplement de « remonter l’algorithme d’Euclide » à partir du dernier reste non nul, comme nous allons l’illustrer 
avec l’exemple ci-dessous. 

 
Exemple II.14 : Chercher une solution particulière de 2952	 × 	𝑢	 + 	516	 × 	𝑣	 = 	12. 
 

4. Propriétés de base 
 
Propriété II.15 : (homogénéité du PGCD)  
Soient 𝑎, 𝑏 et 𝑝 trois entiers. 
Alors (𝑝𝑎) ∧ (𝑝𝑏) = |𝑝|𝑎 ∧ b 
 
Démonstration : sera faite pendant la séance. 
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Propriété II.16 : (associativité du PGCD)  
Soient 𝑎, 𝑏 et 𝑐 trois entiers. 
Alors (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 
De plus, c’est l’unique nombre entier naturel, noté 𝑎 ∧ 𝑏 ∧ c, appelé PGCD de 𝑎, 𝑏 et 𝑐, tel que : 

1)	𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 	𝑐 
2) tout diviseur de 𝑎, 𝑏 et 	𝑐 divise	𝑎 ∧ 𝑏 ∧ c 

 
Démonstration : 

• (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ b et 𝑐, donc divise 𝑎, 𝑏	et 𝑐, et donc divise a et 𝑏 ∧ c. 
Donc (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ (𝑏 ∧ c). 
De même	𝑎 ∧ (𝑏 ∧ c)	divise (𝑎 ∧ b) ∧ 𝑐.	
Ces deux nombres étant des entiers naturels, on a donc (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 

• Le point précédent a déjà établi que 𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 𝑐. 
• Soit maintenant 𝑑 un diviseur de 𝑎, 𝑏 et 𝑐. 

Alors il divise 𝑎 ∧ b et 𝑐, donc divise 𝑎 ∧ 𝑏 ∧ c. 
• Si 𝑑  et 𝑑′ sont deux PGCD de 𝑎, 𝑏 et 𝑐, alors comme 𝑑 divise 𝑎, 𝑏 et 𝑐, donc divise leur PGCD 𝑑′. 

De même, 𝑑’ divise 𝑑. Ces deux nombres étant des entiers naturels, on en déduit que 𝑑 = 𝑑′. 
 
Exemple II.17 :  
La propriété fournit la méthode pour déterminer le PGCD de trois nombres, par exemple avec l’égalité 𝑎 ∧ 𝑏 ∧ c = 
(𝑎 ∧ b) ∧ 𝑐. On a déjà vu que 2952 ∧ 516 = 12, donc 2952 ∧ 516 ∧ 8 = (2952 ∧ 516) ∧ 8 = 12 ∧ 8 = 4. 
 
Propriété II.18 : Soient 𝑎 et 𝑏 deux entiers.  
1) 𝑎 ∧ 𝑎 = 𝑎 
2) 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 
3) Soit 𝑘	un entier naturel non nul. Si 𝑘 divise 𝑎 et 𝑏, alors /

'
∧ 0
'
= %

'
𝑎 ∧ 𝑏. 

4) Soit 𝑞 un entier relatif, alors 𝑎 ∧ 𝑏 = (𝑎 − 𝑏𝑞) ∧ 𝑏 
 

Démonstration : (dernier point uniquement, les trois autres sont laissées au lecteur) 
Soit 𝑑	 = 	𝑎 ∧ 𝑏 et 𝑑′	 = 	 (𝑎 − 𝑏𝑞) ∧ 𝑏 

§ 𝑑 divise 𝑎 et 𝑑 divise 𝑏 donc 𝑑 divise 𝑎	 − 	𝑏𝑞 (combinaison linéaire de 𝑎 et 𝑏) 
Donc 𝑑 est un diviseur commun à 𝑎	 − 	𝑏𝑞 et à 𝑏. 
Ainsi 𝑑 divise 𝑑′. 

§ 𝑑′ divise 𝑎	 − 	𝑏𝑞 et 𝑑′	divise 𝑏 donc 𝑑′	divise 𝑎	 − 	𝑏𝑞	 + 	𝑏𝑞	 = 	𝑎. 
Donc 𝑑# est un diviseur commun à 𝑎	et 𝑏. 
Ainsi 𝑑′	divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, 𝑑 = 𝑑′. 
 

III. Nombres premiers entre eux 
 

1. Généralités 
 
Définition III.1 : 
Deux nombres entiers 𝑎 et 𝑏 sont dits premiers entre eux si et seulement si 𝑎 ∧ 𝑏 = 1 
 
Propriété III.4 : Soient 𝑎 et 𝑏 deux entiers. 
Si 𝑎 ∧ 𝑏 = 𝑑, alors les nombres /

1
 et 0

1
 sont premiers entre eux. 

 
Démonstration : 
C’est quasiment immédiat : /

1
∧ 0
1
= %

1
𝑎 ∧ 𝑏 = %

1
× 𝑑 = 1. 

 
2. Théorème de Bézout (1730-1783) 

 
Théorème III.5 : 
𝑎 ∧ 𝑏 = 1 ⇔	∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
  
Démonstration : sera faite pendant la séance. 
 
Corollaire III.6 : 
𝑎 est premier avec 𝑏 et avec 𝑐 si et seulement si 𝑎 est premier avec le produit 𝑏𝑐. 
 
Démonstration : sera faite pendant la séance. 
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3. Théorème de Gauss 
 
Théorème III.7 : 
Soit 𝑎, 𝑏 et 𝑐 trois entiers relatifs non nuls. 
Si 𝑎 divise 𝑏𝑐 et si 𝑎 et 𝑏 sont premiers entre eux, alors 𝑎 divise 𝑐. 
 
Démonstration : sera faite pendant la séance, en deux versions. 
 
Corollaire III.8 : 
Soient 𝑎, 𝑏, 𝑐, 𝑑 quatre entiers non nuls, avec 𝑑	 ≥ 2. 
Si 𝑎𝑐	 ≡ 	𝑏𝑐	[𝑑] et si 𝑐 et 𝑑 sont premiers entre eux, alors 𝑎	 ≡ 𝑏	[𝑑]. 
 
Démonstration : sera faite pendant la séance. 
 
Exercice III.9 : (lemme chinois) 
Soit 𝑝 et 𝑞 deux nombres premiers entre eux et soient	(𝑎; 𝑏) ∈ ℕ! tels que 0 ≤ 𝑎 < 𝑝 et  0 ≤ 𝑏 < 𝑞. 

1. Montrer qu’il existe 𝑛) ∈ ℤ tel que 7𝑛) ≡ 𝑎[𝑝]
𝑛) ≡ 𝑏[𝑞]. On pourra raisonner par analyse/synthèse. 

2. Exprimer en fonction de 𝑛) l’ensemble des solutions 𝑛 ∈ ℤ du système  7𝑛 ≡ 𝑎[𝑝]
𝑛 ≡ 𝑏[𝑞]. On pourra raisonner par 

analyse/synthèse. 

3. Déterminer l’ensemble des solutions entières du système 7𝑛 ≡ 9[17]
𝑛 ≡ 3[5]  

 
Exercice III.10 (Théorème de Wilson) 
L’objectif de cet exercice est de démontrer le théorème de Wilson : 
 
Soit 𝑝 un entier naturel strictement supérieur à 1. Alors :  

𝑝 ∈ ℙ⇔ (𝑝	 − 	1)! 	≡ −1	[𝑝] 
 

1. Prouver le sens indirect. 
2. Pour le sens direct : 

a. Vérifier que la propriété est vraie pour 𝑝	 = 	2 et 𝑝	 = 	3. 
b. Soit 𝑝 un nombre premier supérieur ou égal à 5 et soit 𝑞 un entier naturel compris entre 2 et 𝑝	 − 2. 

Justifier qu’il existe des entiers a et b tels que a𝑞	 + 	b𝑝	 = 	1. 
c. Soit 𝑟 le reste de la division de a par 𝑝. 

i. Montrer que 𝑟𝑞	 ≡ 1	[𝑝]. 
ii. Vérifier que 2	 ≤ 𝑟	 ≤ 	𝑝	 − 2. 
iii. Montrer qu’à chaque entier 𝑞 compris 2 et (𝑝	 − 2), on peut associer de manière unique un entier 

𝑟 compris entre 2 et (𝑝	 − 2) tel que 𝑟𝑞	 ≡ 	1	[𝑝]. On pourra raisonner par l’absurde. 
d. Conclure. 

 
4. Résolution dans ℤ de l’équation diophantienne 𝒂𝒖 + 𝒃𝒗 = 𝒄 (𝒂, 𝒃, 𝒄	donnés)  

 
Dans ce paragraphe, on considère trois entiers 𝑎, 𝑏, 𝑐 avec 𝑎 ≠ 0 et 𝑏 ≠ 0. 
 
Existence de solutions éventuelles : 
 

Il existe	(𝑢; 𝑣) ∈ ℤ!	tel que	𝑎𝑢 + 𝑏𝑣 = 𝑐 si et seulement si 𝑎 ∧ 𝑏 divise 𝑐. 
 
Démonstration : sera faite pendant la séance. 
 
Recherche de l’ensemble des solutions : 
 
Les solutions	(𝑢; 𝑣) ∈ ℤ!	de l’équation diophantienne	𝑎′𝑢 + 𝑏′𝑣 = 𝑐′avec 𝑎# ∧ 𝑏# = 1 sont de la forme 𝑢 = 𝑢) + 𝑘𝑏′ et 
𝑣 = 𝑣) − 𝑘𝑎′, où (𝑢)	; 𝑣)) est une solution particulière l’équation et 𝑘 ∈ ℤ. 
 
Démonstration : sera faite pendant la séance. 
 
Exemples : 

• 2𝑥	 + 	8𝑦	 = 	5 n'admet pas de solution dans ℤ! car 2 ∧ 8 = 2 ne divise pas 5. 
 

• Résoudre l’équation diophantienne 6𝑥	 + 	4𝑦	 = 	10. 
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IV. Petit théorème de Fermat 
 
Théorème IV-1 : 
Soit 𝑎 un entier relatif et 𝑝 un nombre premier. 
Si 𝑝 ne divise pas 𝑎, alors 𝑎"$% 	≡ 1	[𝑝] 
 
Démonstration : sera faite pendant la séance en suivant le schéma suivant : 
 
On considère la liste de nombres suivante : 𝑎, 2𝑎, 3𝑎,… , (𝑝	 − 	1)𝑎. 
 

1. Montrons tout d’abord que si 𝑘 et 𝑘’ sont deux entiers distincts compris entre 1 et (𝑝	 − 	1), alors les restes de 
la division euclidienne par 𝑝 de 𝑘𝑎 et 𝑘’𝑎 sont distincts et non nuls. 

2. Montrons maintenant que la liste des restes dans la division euclidienne par 𝑝 de 𝑎, 2𝑎, 3𝑎,… , (𝑝	 − 1)𝑎 est 
1, 2, … 	𝑝	 − 	1	 

3. On note 𝑟' le reste dans la division euclidienne de 𝑘𝑎. Donnons une écriture simplifiée de 𝑟%𝑟!…𝑟'. 
4. Montrons que : (𝑝	 − 	1)	! 	𝑎"$% ≡	 (𝑝	 − 	1)	! 	[𝑝]. 
5. Conclusion. 

 
Remarque IV.2 : Attention ! 
La réciproque du petit théorème de Fermat est fausse, c’est-à-dire que si 𝑎"$% 	≡ 	1	[𝑝], avec 𝑝 ne divisant pas, alors 𝑝 
n'est pas nécessairement premier 
 
Contre-exemple : 𝑎	 = 	7 et 𝑝	 = 	6. 
On a bien 72 = 16807 = 2801 × 6 + 1 ≡ 1[6] et 6 n’est pas premier. 
 
Corollaire IV.3 : 
Si 𝑝 est un nombre premier, alors pour tout entier 𝑎 : 𝑎" 	≡ 𝑎	[𝑝] 
 
Démonstration : sera faite pendant la séance. 
 

V. Quelques extraits du concours général 
 
Exercice V.1 : (logarithme discret) 
Si 𝑚% et 𝑚! sont deux entiers tels que 𝑚% ≤ 𝑚! , on désigne par [[𝑚1	,𝑚2]] l’ensemble des entiers 𝑘 tels que  
𝑚% ≤ 𝑘 ≤ 𝑚!.  
 
Si 𝑎 ,𝑏 et 𝑛 sont trois entiers, on note 𝑎	 ≡ 𝑏	[𝑛] lorsque 𝑎 et 𝑏 sont congrus modulo 𝑛, c’est-à-dire lorsque 𝑏	 − 	𝑎 est 
multiple de 𝑛. 
 
Dans tout cet exercice, 𝑝 désigne un nombre premier. 
 
Pour tout 𝐴	 ∈ 	IN, on note (𝐴	𝑚𝑜𝑑	𝑝) le reste de la division euclidienne de 𝐴 par 𝑝. C’est l’unique entier de [[0	, 𝑝	 − 	1]] 
congru à 𝐴 modulo 𝑝. 
 
Un entier 𝑥	 ∈ 	[[1	, 𝑝	 − 	1]] est appelé racine primitive modulo 𝑝 lorsque l’ensemble des (𝑥'	𝑚𝑜𝑑	𝑝), pour  
𝑘	 ∈ 	IN est l’ensemble [[1	, 𝑝	 − 	1]], c’est-à-dire lorsque les puissances de 𝑥, calculées modulo 𝑝, décrivent  
[[1	, 𝑝	 − 	1]] tout entier. 
 
Ainsi, pour 𝑝	 = 	5 : 

• 1 n’est pas une racine primitive modulo 5 puisque toutes ses puissances valent 1. 
• 2 est une racine primitive modulo 5 puisque : (2)	𝑚𝑜𝑑	5) 	= 	1 ; (2%	𝑚𝑜𝑑	5) 	= 	2 ; (2!	𝑚𝑜𝑑	5) 	= 	4 et 

(2*	𝑚𝑜𝑑	5) 	= 	3 
• De même 3 est une racine primitive modulo 5 et 4 n’en est pas une. 

 
1.  On prend dans cette question 𝑝	 = 	7. Déterminer les racines primitives modulo 7. 
 
On admet désormais que, quel que soit le nombre premier 𝑝, il existe au moins une racine primitive modulo 𝑝. Dans la 
suite, on désigne par 𝑔 une racine primitive modulo	p. 
 
2. a.  Montrer que l’ensemble des (𝑔'	𝑚𝑜𝑑	𝑝) pour 𝑘	 ∈ [[0	, 𝑝	 − 	2]]	est [[1	, 𝑝	 − 	1]]. 
 b.  Soit 𝐴 ∈ 	[[1	, 𝑝	 − 	1]]. Justifier l’existence et l’unicité d’un entier 𝑎	 ∈ 	[[0	, 𝑝	 − 	2]] tel que 𝐴	 = 	 (𝑔/	𝑚𝑜𝑑	𝑝).  
     On dit que 𝑎 est le logarithme de base 𝑔 modulo 𝑝 de 𝐴. 
 c.  Soit 𝑏 un entier naturel congru à 𝑎 modulo 𝑝	 − 	1. Calculer (𝑔0	𝑚𝑜𝑑	𝑝). 
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Exercice V.2 : (nombres pointus, session 2020) 
 

 

 
 
 


