Arithmétique — Partie 2 — Version « réduite »

1. Congruence

Définition 1.1 : Soient m, n deux entiers relatifs et d un entier naturel supérieur ou égal a 2. On dit que m et n sont
congrus modulo d sin — m est divisible par d. On note alors n = m [d]

Exemple 1.2 : 8 = 2 [3] car 8 — 2 = 6 est divisible par 3.

Remarque 1.3 : Soit a un entier relatif et b un entier relatif non nul. Il existe (division euclidienne de a par b) un unique
a=bq+r

0<r<|bl

Donca—r =bqgetdonca =r [b].

couple (q;r) € Z? tel que{

Remargue 1.4 : Attention !
Sia =r [b], alors r n'est pas forcément le reste de la division euclidienne de a par b.

Contre-exemple 1.5 :
65 — (—5) = 70 = 7 x 10 donc 65 = —5[7] mais 65 = 7 X 10 — 5 n’est pas la division euclidienne de 65 par 7, celle-ci
étant 65 =7 x 9 + 2.

Remarque 1.6 : Soient m, n deux entiers relatifs et d un entier naturel supérieur ou égal a 2. Alors par définition :
n =m [d] si et seulement s'il existe k € Ztelquen = m + kd.

Propriété 1.7 :
Soient m, n, m’, n’ quatre entiers relatifs et d un entier naturel supérieur ou égal a 2.
Sin =m[d]etn’ =m’'[d] alors:

Nn+n =m+ m'[d]
2)nn' = mm' [d]
3)VpeN, n? =mP [d]
4)Va€eZan=am[d]

Démonstration :
Sin =m|[d]etn’
Donc :
1) n+n=m+m' + (k + k')d
Ork + k' eZdoncn + n' = m + m'[d].
2) nxn=(m+kd)yx(m'+ k'dy= m xm' + (km' + k'm + kk')d.
Orkm'+ k'm + kk' eZdoncn x n'=m x m'[d].

3 n? —mP = (n — m)(MP! + nP2m + .. + mP~1) (Egalité de Bernouilli, voir ci-aprés)
Orn—m=0[d]etn’™! + nP2m + ..+ mP"L €Zdoncn? — mP = 0[d]ien? =m" [d].

n
n'

m' [d] alors il existe (k; k") € Z? tels que : { I;C

m +
m + k'd

4) an = a(m + kd) = am + akd.
Orak € Zdoncan = am [d]

Remargue 1.8 : Attention !
Les réciproques sont fausses.

Propriété 1.9 : (égalité de Bernouilli)
Soient a, b deux nombres réels et n un entier naturel supérieur ou égal a 1.

Alors : a" — b™ = (a — b) YRzsa™ * bk = (a— b)(@" * + a™ 2b + -+ + ab™ % + b7 1),

Démonstration : sera faite pendant la séance.

Application 1.10 : Puissances d'un entier
Déterminer les restes de la division par 5 des puissances de 2™ pour n € N.

Préparation au Concours Général 2025-2026 — Académie de Reims Rémi ALLART




Il. Algorithme d’Euclide et PGCD de deux entiers

1. Algorithme d’Euclide

Soient a et b deux entiers. On note D(a) 'ensemble des diviseurs de a et D(a, b)'ensemble des diviseurs communs
de a et b.

Lemme Il.1 : Si a et b sont deux entiers, alors D(a,b) = D(|al, |b])

Démonstration : Il s’agit de prouver une égalité ensembliste. Nous allons procéder par double inclusion.

[d Soit d € D(a, b).

En particulier, d divise a donc d divise +a et donc d divise |a|
De méme, d divise |b]|.

Donc d € D(lal, |b]).

Raisonnement similaire, laissé au lecteur.

Remarque 1.2 : ce lemme permet de limiter la recherche des diviseurs communs de deux nhombres entiers a ceux de
leurs valeurs absolues, c’est-a-dire de deux nombres entiers naturels.

Lemme 11.3 : Si a et b sont deux entiers naturels avec b > 0 et si r désigne le reste de la division euclidienne de a par
b, alors D(a,b) = D(b, 7).

Démonstration : Egalement par double inclusion.

. . - =b
Notons q le quotient de la division euclidienne de a par b, de sorte que {g < rq<7br|'
[d Soit d € D(a, b).
Alors d divise a et b.
De plus r = a — bq donc d divise r.
Donc d € D(b, 7).

Raisonnement similaire, laissé au lecteur.

Remarque Il.4 : ce lemme permet de remplacer la recherche des diviseurs communs de a et b a ceux de b et r, avec
0<r<|b|

Lemme IL.5 : Si a est entier, alors D(a,0) = D(a)

Démonstration : Egalement par double inclusion, laissée au lecteur.

Remarque 1.6 : ce lemme permet de conclure si un des deux entiers est nul.

Application Il.7 : algorithme d’Euclide
Soient a et b deux entiers.
Notons r, = |a| et r; = |b|. D’apres le lemme 1.1 : D(a, b) = D(ry,1y).

e FEtape1:
= Sir, =0, alors D(ry,1,) = D(ry) d’aprés le lemme 11.5.
. S = +
= Sinon, on effectue la division de r, par r; : 3! (q, ;,) € N? tel que {7’00 <r1q1 2
<rn<n

On a alors d’apres le lemme 1.3 : D(ry, 1) = D(1y, 13).
e FEtape2:
= Sir, =0, alors D(ry,1,) = D(r;) d’aprés le lemme 11.5.

T =T1q; 713

= Sinon, on effectue la division de r; parr, : 3! (g, ;73) € N2 tel que{ O<m<r

On a alors d’apres le lemme 1.3 : D(1ry, 1) = D(1y,13).

On obtient une suite d’entiers naturels (3,) o strictement décroissante, donc IN = 0 tel que ry # 0 et ry,, = 0.
De plus D(rp, 1) = D(ry, 1) = D(1y,13) =+ = D(ry,Ty41) = D(1y).

Exemple II.8 : Chercher avec I'algorithme d’Euclide les diviseurs communs de 56 et 12.
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2. PGCD de deux entiers

Propriété IL.9 :
Soient a et b deux entiers.

Alors il existe un unique entier naturel, noté a A b (ou PGCD(a ; b)) appelé plus grand commun diviseur de a et b tel
que :

1) aAbdiviseaeth

2) Tout diviseur de a et b divise a A b
De plus, ce PGCD, nul si a et b sont nuls, est, dans tous les autres cas, égal au dernier reste non nul dans
I'algorithme d’Euclide appliqué a |alet |b].

Démonstration : On suppose a et b non nuls.
e Unicité : Soient d et d’ deux entiers naturels vérifiant 1) et 2).
D’aprés 1), d est un diviseur commun de a et b, donc d’apres 2), d divise d'.
De méme d’ divise d.
Comme d et d’ sont positifs, alors d = d’.
o Existence : Notons ry le dernier reste non nul dans I'algorithme d’Euclide appliqué a |alet |b|.
C’est un entier naturel et d’aprés les lemmes précédents : D(a,b) = D(|al, |b|) = D(ry). Donc:
o rmydiviseaeth
o Tout diviseur de a et b divise ry
Par unicité ry = a A b.

Exemple 11.10 : Déterminer le PGCD de 2952 et 516.

3. Egqalité de Bézout

Propriété 11.11 : Soient a et b deux entiers.
Alors il existe deux entiers u et v (mais pas nécessairement uniques) tels que : au + bv =a A b

Démonstration : on reprend les notations utilisées pour I'algorithme d’Euclide avec r, = |a| etr; = |b|. On a:
(0) upa +vyb =1y, avecuy, =tletv, =0
(1) wya+v,b=r,avecuy, =0etv, = +1

On écritry = r,q, + r, avec 0 < r, < ry, puis I'égalité (2) = (0) — g, x (1) :
(2) upa+vob — gy X (Wa +vib) =15 — g1y
Soit : (U — q1ug)a + (g — qv)b =15 — g1y
On obtient : u,a + v,b =1, avec : u, = uy — qu, et v, = vy — q vy

On écritr, = 1,q, + r; avec 0 < r; < 1y, puis I'égalité (3) = (1) — g, X (2) :
() wa+vib—qy X (Wa +v,b) =11 — g1,
Soit : (uy — qauz)a + (V1 — qov2)b =11 — @1
On obtient : uga + v3b =13, avec : u; = u; — qyu, et v; = v; —q,v,

On poursuit le processus jusqu’au premier reste nul : ry_; = qyry + 0
On aalors ry = a Ab etl'égalité (N) :
(N)uya+vyb =1y, avec:uy =uUy_ — qy_1Un-1 €1 Uy = Vy 53 — qy_1Vy_1-

Remarque 11.13 : La démonstration peut paraitre ardue, en raison des notations, mais le principe est trés simple : il
s’agit simplement de « remonter I'algorithme d’Euclide » a partir du dernier reste non nul, comme nous allons lillustrer
avec 'exemple ci-dessous.

Exemple II.14 : Chercher une solution particuliére de 2952 X u + 516 X v = 12.

4. Propriétés de base

Propriété 11.15 : (homogénéité du PGCD)
Soient a, b et p trois entiers.
Alors (pa) A (pb) = [plaAb

Démonstration : sera faite pendant la séance.
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Propriété 11.16 : (associativité du PGCD)

Soient a, b et c trois entiers.

Alors (a Ab)Ac=aA (bAc).

De plus, c’est 'unique nombre entier naturel, noté a A b A ¢, appelé PGCD de a, b et ¢, tel que :
1)aAbAcdivisea,b et ¢
2) tout diviseur de a, b et c diviseaAb Ac

Démonstration :

e (aAb)Acdivise aAb et c, donc divise a, b et ¢, et donc divise aet b Ac.
Donc (a Ab) A c divise a A (b Ac).
De méme a A (b A c) divise (a Ab) Ac.
Ces deux nombres étant des entiers naturels, on adonc (a Ab) Ac =a A (b Ac).

e Le point précédent a déja établi que a A b A cdivise a, b et c.

e Soit maintenant d un diviseur de a, b et c.
Alors il divise a A b et ¢, donc divise a A b A c.

e Sid etd sontdeux PGCD de q,b et ¢, alors comme d divise a, b et ¢, donc divise leur PGCD d'.
De méme, d’ divise d. Ces deux nombres étant des entiers naturels, on en déduit que d = d'.

Exemple Il.17 :
La propriété fournit la méthode pour déterminer le PGCD de trois nombres, par exemple avec I'égalité a Ab A c =

(aAb) Ac. On adéjavu que 2952 A 516 = 12, donc 2952 A516 A8 = (2952 A516) A8 =12A8 = 4.

Propriété 11.18 : Soient a et b deux entiers.

Nana=a

2)aAb=bAa

3) Soit k un entier naturel non nul. Si k divise a et b, alors %/\% = %a Ab.
4) Soit g un entier relatif, alorsa Ab = (a—bq) A b

Démonstration : (dernier point uniquement, les trois autres sont laissées au lecteur)
Soitd = aAbetd = (a—bg)Ab
= ddivise a et d divise b donc d divise a — bq (combinaison linéaire de a et b)
Donc d est un diviseur commun a a — bqg eta b.
Ainsi d divise d'.
= d'divise a — bq et d' divise b donc d' divise a — bq + bq = a.
Donc d' est un diviseur commun a a et b.
Ainsi d’ divise d.
Comme d et d’ sont positifs, d = d'.

1. Nombres premiers entre eux

1. Généralités

Définition lll.1 :
Deux nombres entiers a et b sont dits premiers entre eux si et seulementsiaAb =1

Propriété lll.4 : Soient a et b deux entiers.
Sia Ab =d, alors les nombres g et % sont premiers entre eux.

Démonstration :
1 1

) . ) - b
C’est quasiment immédiat : %A —=-anb=-

xXd=1.

2. Théoréme de Bézout (1730-1783)

Théoréme lIL.5 :
aAb=1o 3(u;v) €EZ?telsque au + bv = 1

Démonstration : sera faite pendant la séance.

Corollaire 111.6 :
a est premier avec b et avec c si et seulement si a est premier avec le produit bc.

Démonstration : sera faite pendant la séance.
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3. Théoréme de Gauss

Théoréme lll.7 :
Soit a, b et ¢ trois entiers relatifs non nuls.
Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

Démonstration : sera faite pendant la séance, en deux versions.

Corollaire 1IL.8 :
Soient a, b, ¢, d quatre entiers non nuls, avec d = 2.
Siac = bc [d] et si c et d sont premiers entre eux, alors a = b [d].

Démonstration : sera faite pendant la séance.

Exercice lll.9 : (lemme chinois)
Soit p et g deux nombres premiers entre eux et soient (a; b) € N> telsque 0 <a<pet 0<b <q.
ny = alp]
no = b[q]

2. Exprimer en fonction de n, 'ensemble des solutions n € Z du systeme {Z

. On pourra raisonner par analyse/synthese.

= a[p]
= b[q]

1. Montrer qu’il existe n, € Z tel que {

. On pourra raisonner par

analyse/synthese.

3. Déterminer 'ensemble des solutions entiéres du systéeme {7;5293[[157]]
Exercice .10 (Théoréme de Wilson)
L’objectif de cet exercice est de démontrer le théoreme de Wilson :
Soit p un entier naturel strictement supérieur a 1. Alors :
pEPS (p — 1! =-1]p]

1. Prouver le sens indirect.
2. Pour le sens direct :
a. Veérifier que la propriété est vraie pourp = 2etp = 3.
b. Soit p un nombre premier supérieur ou égal a 5 et soit g un entier naturel compris entre 2 etp — 2.
Justifier qu'il existe des entiers et ftels que aq + fp = 1.

c. Soit r le reste de la division de & par p.
i. Montrer que rq =1 [p].
ii. Vérifierque2 <r < p —2.
iii. Montrer qu’'a chaque entier g compris 2 et (p — 2), on peut associer de maniére unique un entier
r compris entre 2 et (p — 2) tel que rq = 1 [p]. On pourra raisonner par I'absurde.
d. Conclure.

4. Résolution dans Z de I’équation diophantienne au + bv = ¢ (a, b, c donnés)

Dans ce paragraphe, on considére trois entiers a,b,c aveca # 0 et b # 0.

Existence de solutions éventuelles :

Il existe (u; v) € Z? tel que au + bv = ¢ si et seulement si a A b divise c.

Démonstration : sera faite pendant la séance.

Recherche de I’ensemble des solutions :

Les solutions (u; v) € Z? de I'équation diophantienne a'u + b'v = c'avec a’ A b’ = 1 sont de la forme u = u, + kb’ et
v =1, — ka', ou (u, ; vy) est une solution particuliére I'équation et k € Z.

Démonstration : sera faite pendant la séance.

Exemples :
e 2x + 8y = 5 n'admet pas de solution dans Z? car 2 A 8 = 2 ne divise pas 5.

e Résoudre I'équation diophantienne 6x + 4y = 10.
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V. Petit théoreme de Fermat

Théoréme IV-1 :
Soit a un entier relatif et p un nombre premier.
Si p ne divise pas a, alors a?~! =1 [p]

Démonstration : sera faite pendant la séance en suivant le schéma suivant :

On consideére la liste de nombres suivante : a, 2a,3a, ..., (p — 1Da.

1. Montrons tout d’abord que si k et k' sont deux entiers distincts compris entre 1 et (p — 1), alors les restes de
la division euclidienne par p de ka et k’a sont distincts et non nuls.

2. Montrons maintenant que la liste des restes dans la division euclidienne par p de a, 2a, 3q, ..., (p — 1)a est
1,2,.p—-1

3. On note r; le reste dans la division euclidienne de ka. Donnons une écriture simplifiée de ryr, ... 7.

4. Montronsque:(p — D)!a? 1= (p — D! [p].

5. Conclusion.

Remargque V.2 : Attention !
La réciproque du petit théoréme de Fermat est fausse, c’est-a-dire que si a?~! = 1 [p], avec p ne divisant pas, alors p
n'est pas nécessairement premier

Contre-exemple: a = 7etp = 6.
On a bien 7° = 16807 = 2801 x 6 + 1 = 1[6] et 6 n'est pas premier.

Corollaire IV.3 :
Si p est un nombre premier, alors pour tout entier a : a? = a [p]

Démonstration : sera faite pendant la séance.

V. Quelques extraits du concours général

Exercice V.1 : (logarithme discret)

Sim,; et m, sont deux entiers tels que m; < m, , on désigne par [m1,m2]] 'ensemble des entiers k tels que
my <k <m,.

Si a ,b et n sont trois entiers, on note a = b [n] lorsque a et b sont congrus modulo n, c’est-a-dire lorsque b — a est
multiple de n.

Dans tout cet exercice, p désigne un nombre premier.

Pour tout A € IN, on note (A mod p) le reste de la division euclidienne de A par p. C’est I'unique entier de [[0,p — 1]
congru a A modulo p.

Unentierx € [[1,p — 1] est appelé racine primitive modulo p lorsque I'ensemble des (x* mod p), pour
k € IN estl'ensemble [1,p — 1], c'est-a-dire lorsque les puissances de x, calculées modulo p, décrivent
[1,p — 1] tout entier.

Ainsi, pourp = 5:
¢ 1 n’est pas une racine primitive modulo 5 puisque toutes ses puissances valent 1.
e 2 est une racine primitive modulo 5 puisque : (2°mod 5) = 1; (2 mod5) = 2; (22 mod 5) = 4 et
(23mod5) = 3
e De méme 3 est une racine primitive modulo 5 et 4 n’en est pas une.

1. On prend dans cette question p = 7. Déterminer les racines primitives modulo 7.

On admet désormais que, quel que soit le nombre premier p, il existe au moins une racine primitive modulo p. Dans la
suite, on désigne par g une racine primitive modulo p.

2. a. Montrer que 'ensemble des (g* mod p) pour k € [[0,p — 2]lest[[1,p — 1]
b. SoitA € [[1,p — 1]. Justifier I'existence et I'unicité d’'un entiera € [[0,p — 2] telque A = (g® mod p).
On dit que a est le logarithme de base g modulo p de A.
c. Soit b un entier naturel congru & a modulo p — 1. Calculer (g? mod p).
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Exercice V.2 : (nombres pointus, session 2020)

1 Probléme 1: Nombres pointus

Soit 7 un entier naturel non nul. On dit que » est pointu si # admet au plus un facteur premier
ou bien si, en notant p et g les deux plus grands facteurs premiers de n, avec p > g, I'inégalité
p =24 est vérifiée.

Par exemple, 1 est pointu, car il n’a aucun facteur premier. De méme, 25 est pointu, car il n’a
qu’un seul facteur premier, et 147 est pointu, car 147 = 3 x 72 et 7 = 2 x 3. Au contraire, 105 n’est
pas pointu, puisque 105=3x5x7et7 <2 x5.

Dans ce probléeme, on cherche a démontrer qu’il existe des suites arbitrairement longues d’en-
tiers consécutifs pointus. Plus précisément, on souhaite démontrer la propriété 22 suivante :

Pour tout entier m = 1, il existe un entier z = 0 tel que les nombres n+1,n+2,...,n + m soient
tous pointus.

1.1 Quelques exemples

1. Le nombre 2020 est-il pointu?

2. Quel est le plus petit entier naturel non nul qui ne soit pas pointu?

3. Quel est le plus petit nombre pointu possédant au moins quatre facteurs premiers distincts?
4. Démontrer qu'il existe une infinité de nombres pointus.

5. Démontrer qu'il existe une infinité d’entiers naturels non nuls qui ne sont pas pointus.

6

. Etablir la liste des nombres pointus entre 1 et 20 inclus. Quelle est la longueur maximale
d’une suite de nombres pointus consécutifs entre 1 et 20?

1.2 Peude grands nombres premiers

Onpose 0l =1,et /! =1x2x---x ¥ =¢(—1)! pour tout entier £ > 1. Soient alors k et n deux
entiers naturels tels que k < n. On s'intéresse a la fraction

n!
kl(n-k)!

que l'on note Fy, .

7. a. Calculer les valeurs des nombres F3; et Fg 4.
b. Démontrer que, si k=0 ou k = n, alors Fp, ;. = 1.
c. Démontrer que, sil< k<n-1, alors F, = Fp—1,k + Fn—1,k-1

d. En déduire que, pour tout entier naturel n et pour tout entier naturel k < n, Fp, ;. est un
entier naturel non nul inférieur ou égal a 2™.

Dans cette question et dans les parties qui suivent, pour tout entier naturel n, on note P,, I'en-
semble des nombres premiers p tels que n+1 < p < 2n, et on note 7, le nombre d’éléments de
Py.
8. a. Démontrer que, pour tout nombre premier p appartenant a I'ensemble P, I'entier Fz,
est divisible par p.
b. Démontrer que, si g, b et ¢ sont des entiers naturels non nuls tels que b et ¢ sont premiers
entre eux et divisent a, alors I’entier bc divise a lui aussi.

c. Soit d le produit de tous les éléments de P,. Démontrer que I'entier F»y, , est divisible par
d.

d. En déduire que n" < 22",
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